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Summcl4~ : (21 S-Sie$%etene S,N acctaaYn keact tuith a-uwne6 .to a6,$wcd excLuhiwe 

1-2 addi-tion. T.i.tan.ium @nethioeateh and titanium - ate - cotqfexe. 

emthiakkteh undetlgo 7-i’” l-4 addition. 

In a previous paper1 we established that lithium enethiolates 1 generated _ 

from N-dimethylthioamides R1CH2CSN(F;e)2 provide either l-2 or 1-4 addition with 

a-enones C6H5-CH=CH-CO-R2. The regioselectivity of the addition was determined by 

R1 and R2. Recently we reported that condensation of (Z) S-siLylketene S,N acetals 

2 jn the presence of TBAF or Lewis acids catalysis affords B-hydroxythioamides in - 

good yields2. Diastereoselectivities of the aldol condensations via lithium ene- 

thiolates 1 or via S-silylketene S,N acetals 2 were quite different. In this com- - - 

munication, we wish to report regioselective l-2 addition of 2 to a-enones whatever - 

R' and R2. Regioselectivity of the addition of titanium enethiolates 5 and titanium _ 

- ate - complexes 6 has been also studied. _ 

I - Reaction of S-silylketene S,N scetals 2 with Ci-enones in the presence of chlo- - 

rotitanium triisopropoxide. 

The area of applications of reaction of silyl enol ethers and silyl 

ketene acetals with electrophiles activated with Lewis acids has been well re- 
3 

viewed . Mukaiyama and co-workers have reported that silyl enol ethers4 and 0-silyl 

ketene acetals5 undergo Lewis-acid catalyzed 1-4 addition to a-O unsaturated com- 

pounds and their derived acetals, In sharp contrast with those authors, condensation 

of (Z) S-silylketene S,N acetals 2 with n-enones activated by ClTi(OiPr)3 affords 

exclusively l-2 addition in good yields whatever R1 and R2 (table I). 
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1) ClTi(OiPr)3 

Ri.r-,S-SiMe3 
+ C6H5-CH=CH-CO-R 

‘! 
CH2Cl* 

tC6H5-CH=CH-C(OH)R2CH(R1)CSNMe2 

2-2 
NMe2 

3 
2) H30+ 

4 (R*R* + R*s*) _ _ _ 

Table I : Regioselective l-2 addition of 2-2 with a-enones in the presence of - 

ClTi(OiPr)3 *. 

Entry R1 R2 Reaction conditions Yield 4 (4a/?bj** 

Temp(OC) Time (hr) % 

1 CH 3 CH3 -40 1 82 (65135) 

2 CH3 '6"5 0 1 a4 (48152) 

3 (CH3)2CH Cf13 0 1 47 (30/7(l) 

4 (CH3)*CH '6"5 -45 1 48 (47153) 

5 (CH~)*CH C6t15 0 1 64 (47153) 

6 (CH3)*CH 'gH5 20 2 67 (50/50) 

* 

+* 
C1Ti(OiPr)3 was prepared according ref. 6 . 

Hydroxythioamides 4 were obtained as diastereoisomeric mixtures. _ 

Diastereoisomeric ratio 4a/Ah determined by 'H-NMR (250 MHz)' and HPLC (Silica _ 

gel Si-60, 25 cm, 5y , CH2C12 - petroleum ether gradient). 

&a is assigned in all cases to the isomer with higher RF and 4b to that with _ 

a lower R 
F 

value. 

We wish to report also that condensation of (2) 0-silylketene 0,N acetal 

CH3-CH=C<;;~e 3 with benzilidene acetophenone (R2 = C6H5) affords a mixture of 

l-2/1-4 addit?on (*O/80, reaction conditions identical to entry 2). 

The striking difference in regioselectivity of silylketene acetals, O- 

silylketene 0,N acetals, S-silylketene S,N acetals (and lithium enethiolates) pro- 

mises to be useful in synthetic organic chemistry. 

II - Reaction of titanium-enethiolates 5 and titanium-ate - complexes 6 with _ 

cl-enones. 

Despite extensive research about the enolate anion, present knowledge 

relating to the condensation of transition metal enolates with cc-enones is limi- 

ted*". 

We have prepared titanium enethiolates 5 and titanium-ate complexes 5 _ 

according methods described for titanium-(ate) enolates 
10,ll 

R1-CH= 
,S-Ti(OiPr)3 

\ 
+ LiCl 

5 
NMe2 

_ 

RI-CB= 
,S-Ti(OiPr)4 Li' 

\ 
6 

NMe2 
_ 
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Reetz8 ans Seebach have shown that by mixing solutions of R-Li and 

Ti(OiPr) 4, a reagent is formed which behaves neither as R-Li nor, however as 

R-Ti(OiPr)3. Condensation of 5 and 6 with cx-enones confirms this difference (ta- _ -. 

ble II). 
x 

*: 
/ 

C6H,-CU=CH-C(OH)C6H5-CH(R1)CSNMe2 

RI-C"- lSM 
/ 4 (l-2 addition) - 

\ NMe2 

+ C6H5-CH=CH-CO-C H 
65 

5 or 6 
3 _ 

_ _ 
C6H5-CH-CH2-CO-C H 

I 
65 

RI-CII-CSNMe2 

7 (l-4 addition) 

Table II : Addition of 2 or 6 with benzylidene acetophenone. _ 

Entry R1 M Reaction conditions Ratio 

Temp('C) Time (hr) 417 4af4b La/lb 

7 CH3 Ti(OiPr)3 -80 0,5 100/*-l 50/50 - 

8* 
CH3 Ti(OiPr) 3 

-40 1 loo/*-* lOO/- - 

9* 
CH3 

l?i(OiPr)4Li+ -50 1 45155 38162 35165 

10 (CH3)2CH Ti(OiPr)3 -80 0,5 
+ 

11 (CH ) CH fi(OiPr) Li - 32 4 -80 0,5 *L/l00 *** 

II * (CH ) CH 
32 

T-i(OiPr) Li 
+ 

4 -SO 1 t*/100 - WC IL 

* 
cx-enoneis added at -80°C to a solution of 5 or 6 and after 5 mn, the _ _ 

is allowed to warm up at temperature indicated in table II. 
a* 

*** 
No trace of isomer 7 (or 4) disclosed by NMR and HPLC. _ _ 

Only one diastereoisomer 7 disclosed by NMR and HPLC and identical to lithium 

1- 
enethiolate synthesis . 

tlY 

was 

Kinetic control for entry 7-9-11 were verified as follows : an independen- 

synthesized 4a/4b mixture (20/80) from a-enone and S-silylketene S,N acetals 

reacted with CH3Ti(OiPr)3 or with CH3T-i(OiPr)4Li+ liberating CH4 and the Ti- 

Yield % 

(&+I) 

80 

50 

95 

0 

25 

80 

mixture 

(ate)-enethiolates. The usual work up affords unchanged Aa/? b mixture (20/80). 

In case of Q.-B unsaturated carbonyl compounds, methyl titanium triisopro- 

poxide 
12 

and titanium-ester enolate 
a 

add in a l-2 manner. Selectivities in tables 

I and II are presently difficult to rationalize, but reactivities and selectivities 

differences corroborate hypothesis that TiX4 promoted cross-aldol condensation with 
13 

S-silylketene S,N acetals 2 does not involve titanium enethiolate as intermediate . _ 

We are working on further experiments aimed at elucidate mechanistic aspects of 

those additions. 
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